نوع مقاله : مقاله پژوهشی
نویسندگان
1 گروه مدیریت مالی،واحد تهران شمال،دانشگاه آزاد اسلامی،تهران، ایران.
2 گروه مدیریت مالی،واحد تهران شمال،دانشگاه آزاد اسلامی،تهران،ایران
3 گروه مدیریت مالی،واحد تهران شمال،دانشگاه آزاد اسلامی،تهران،ایران.
چکیده
کلیدواژهها
عنوان مقاله [English]
نویسندگان [English]
This research is an attempt to introduce a desirable model for modeling and forecasting the fluctuations of financial processes. For modelling the fluctuations of financial processes, we have used the combination of the GARCH model and the discrete wavelet transform. In this thesis, we are presented a model for forecasting fluctuations of returns of exchange price index. Stock price index data has been reviewed. The data was collected from the site https://databank.mefa.ir/data from 1/1/1390 to 29/12/1396. Due to the importance of return on financial data, the returns series is calculated and applied for modeling. After preparing data, the two combination models namely ARMA-ARCH and DWT-GARCH are fitted to the data series. The results show that the DWT-GARCH model has better performance than the ARMA-ARCH model. The DWT-GARCH model can significantly improve prediction outcomes and reduce the conditional variance by overcoming the defects of the GARCH family models that can not model the partial features of a process and maintain the benefits of using models The GARCH family describes the fluctuations.
کلیدواژهها [English]
16. Barragán, B.M., Ramos, S.B., Veiga, H. (2015). “Correlations between oil and stock markets: A wavelet-based approach”, Economic Modelling, 50, 212-227.
17. Bollerslev, T. (1986). “Generalized Autoregressive Conditional Heteroscedasticity”, J. of Econom., 31(3), 307–327.
18. Box, G.E.P., Cox, D.R., 1964. “An analysis of transformations”. Journal of the Royal Statistical Society, Series B, 26:211-252.
19. Chan, H.W. and Young, D. (2006). Jumping hedges: “An examination of movements in copper spot and futures markets”, Journal of Futures Markets, Volume 26, Issue 2, Pages 169–188.
20. Engle, R. F. (1982). “Autoregressive conditional heteroskedasticity whith estimate the variance of U.K.inflation, Econometrica”., 50(4), 987-1008.
21. Gherman, M., Terebes, R., Borda, M. (2012). “Time series analysis using wavelet and GJR-GARCH models”, 20th European signal processing conference (EUSIPCO 2012), Bucharest, Romania, August 27-31.
22. Higgens, M. L. and A. K. Bera, (1992).” A class of nonlinear ARCH models”, Int. Econ. Rev., 33, 137-158.
23. Jammazi R. (2014) “Oil Shock Transmission to Stock Market Returns: Wavelet-Multivariate Markov Switching GARCH Approach. In: Ramos S., Veiga H. (eds) The Interrelationship Between Financial and Energy Markets”. Lecture Notes in Energy, vol 54. Springer, Berlin, Heidelberg.
24. Jothimani, D., Shankar, R., Yadav, S.S., (2015) “Discrete Wavelet Transform-Based Prediction of Stock Index: A Study on National Stock Exchange Fifty Index”, Journal of Financial Management and Analysis, 28 (2), 35-49.
25. Kenourgios, F.D. and Aristeidis G. Samitas, G. A. (2004). “Testing efficiency of the copper futures market: New evidence from London metal exchange”. Conference in Rhodes
26. Klaassen, F., (2002). “Improving GARCH volatility forecasts with regime-switching GARCH”, Empir. Econ., 27, 363-394.
27. Kumar, S. and Kamaiah, B. (2017). “Return and volatility spillover between Asian equity market: a wavelet approach.”
28. McKenzie, D.M. and Faff, W.R. (2003).” The Determinants of Conditional Autocorrelation in Stock Returns”, Journal of Financial Research, Volume 26, Issue 2, Pages 259–274.
29. Nelson, D. B., (1991). “Conditional heteroscedasticity in asset returns: A new approach”, Econometrica, 59(2), 349-370.
30. Pereira, E. N., Scarpin, C. T., Júnior, L. A. T. (2015). “Hybrid Wavelet Model for Time Series Prediction”, Applied Mathematical Sciences, 9(149), 7431 – 7438.
31. Watkins, C. and McAleer, M. (2008). “How has the volatility in metals markets changed?”, Mathematics and Computers in Simulation 78, 237-249.